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Scaffold Hopping in Medicinal Chemistry

In medicinal chemistry, scaffold hopping is a strategy for designing new drug molecules by replacing
the core structure or scaffold of an existing drug molecule with a structurally different one while
still retaining the key biological activity. This can be done by identifying common features or
pharmacophores of the original scaffold and the desired scaffold, and then using computational or
medicinal methods to design and optimize new molecules with similar activity. In the practice,
scaffold hopping is carried out for different purposes. For example, one might be interested in
circumventing an intellectual property position by identifying novel chemical entities having a
desired activity, improving ADMET profile, or decreasing toxicity. !

The past 10 years witnessed great success in discovery and development of BTK inhibitors. Ibrutinib
(135) was the first BTK inhibitor approved for the treatment of several B cell malignancies. [
However, due to its binding to BTK in its active conformation, Ibrutinib not only potently inhibits
BTK, but also inhibits all kinases which carry a Cys at the same position as BTK. Consequently, it is
associated with several side effects, such as skin rash and diarrhea which are well associated with
EGFR inhibition, and platelet disfunction which is resulted from TEC and SRC inhibition. Second
generation of BTK inhibitors, Acalabrutinib 3! and Tirabrutinib ], were discovered by employing
scaffold hopping strategy based on Ibrutinib. Althought both of them retain a similar binding mode
to BTK as lbrutinib, they offer an overall improved selectivity profile against other kinases and
therefore reduce side effects observed in treatment with Ibrutinib (Figure 52).
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Figure 52. BTK inhibitors and CDK4/6 inhibitors approved by FDA
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Figure 53. Building blocks for systematic scaffold hopping studies
Discovery of CDK4/6 inhibitors is another well-known example, representing the high value of
scaffold hopping. CDK4/6 inhibitors brought as remarkable influence as BTK inhibitors for the
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treatment of cancers and became a new standard of care of patients with advanced hormone
receptor-positive breast cancer. ! Palbociclib (138) and Ribociclib (139) were the first two drugs
approved by FDA. 181 Obviously, there are several common features in structures of Palbociclib and
Ribociclib, and the most distinct difference is the two scaffolds used (Figure 52). An efficient access
of a set of diverse building blocks is considered of great value for medicinal chemists to conduct
SAR/SPR studies by scaffold hopping (Figure 53).

In order to discover selective oral inhibitors of ERK1/2, previous scaffold hopping efforts based on
compound 140 with a pyrrolo-pyrazinone scaffold generated compound 141 with an imidazo-
pyrazinone scaffold. It was remarkable than a nitrogen atom in the scaffold of compound 141
increased aqueous solubility significantly by 55-fold and reduced metabolism in human microsome.
The same trend was observed in paired compounds 142 and 143. In addition, compounds 141 and
143 also demonstrated improved kinase selectivity to compounds 140 and 142 respectively (data
not shown, Figure 54). Further lead optimization based on compound 143 generated a clinical
candidate AZD0364 for the treatment of NSCLC. []
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Figure 54. Scaffold hopping increased aqueous solubility and reduced metabolism.

Filgotinib (144) is one of second-generation JAK inhibitors with high JAK1 selectivity against other
JAK family members, which was approved for the treatment of autoimmune and inflammatory
diseases, such as rheumatoid arthritis (RA) and inflammatory bowel diseases (IBD). [l The amide
hydrolysis reaction and the corresponding metabolite AMF (145) of Filgotinib (144) is primarily
mediated by CES2. Notably, its amide hydrolysis metabolite AMF (145) show much higher exposure,
longer half-life but 10-fold lower potency than those of Filgotinib (144) in human. Besides, both
Filgotinib (144) and AMF (145) are substrates of PgP, and potential inhibitors of organic anion
transporting polypeptides. Hereby further investigations of drug-drug interactions based on these
transporters in clinic is still ongoing. In order to circumvent amide hydrolysis, scaffold hopping
studies based on Filgotinib (144) generated a novel clinical candidate FZJ-003 (146) where a
nitrogen atom was removed from core structure. It was extremely interesting that amide hydrolysis
of FZJ-003 (146) was not observed, which was reflected by higher exposure of FZJ-003 (146) than
Filgotinib (144) and almost no metabolite FZJ-004 (147) of FZJ-003 (146) was detected in PK studies
(Figure 55). It was hypothesized that electron density of nitrogen of amide of FZJ-003 (146) is higher
than that of Filgotinib (144), which is resulted from the lower electron-withdrawing ability of
imidazole ring of FZJ-003 (146) than that of triazole ring of Filgotinib (144). In addition, compared to
Filgotinib (144), FZJ-003 (146) displayed 5-fold higher potency for JAK1 while maintaining similar
selectivity against other JAK family members. [°!
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Figure 55. Novel scaffold in FZJ-003 resolved amide hydrolysis issue of Filgotinib.

Compound 148 was selected as a starting point for medicinal chemistry to discover novel CAMKK2
inhibitors. The team employed scaffold hopping by replacing 7-azaindole ring in compound 148
with a variety of diverse scaffolds. In summary, most of scaffolds exhibited robust CAMKK2 enzyme
inhibition, such as furopyridine ring in compound 149, thienopyridine ring in compound 150,
pyrazolopyridine ring in compound 151 and pyrazolopyrimidine in compound 152. Among of them,
compound 150 demonstrated comparable potency to compound 148. (19 Dihalo- scaffolds are
critical starting materials for quick access of these compound for evaluation. (Figure 56)
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Figure 56. Scaffold hopping identified novel CAMKK2 inhibitors.

To further evaluate fused 5,6-ring structures as CAMKK2 inhibitors, the team switched from 3,5-ring
substitutions as depicted in Figure 56 to 2,4-ring substitutions as depicted in Figure 57. All of these
compounds, compound 154 with an imidazopyridine core structure, compound 155 with a
thienopyrimidine core structure and compound 156 with a reverse thienopyrimidine core structure,
exhibited high CAMKK2 inhibition. Besides three scaffold used by the team in Figure 57, there are
several other novel scaffolds which could potentially be employed by the team to further explore
SAR and SPR.
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Figure 57. Scaffold hopping identified novel CAMKK2 inhibitors.

In order to discover a novel NIK inhibitor which is sufficient for robust in vivo evaluation of NIK
pharmacology, the team tried several scaffolds with some of them represented in Figure 58.
Comparing compound 157 and compound 158, it was found that an additional nitrogen atom in the
scaffold of compound 158 increased NIK binding affinity by at least 1500-fold. This observation can
be explained by a potential intramolecular hydrogen bond between hydrogen of amide and the
nitrogen atom, which lock the molecule in a binding favorable conformation as shown in the X-ray
structure of an analogue. ' Elimination of nitrogen from pyridine ring of compound 158 generated
compound 159 with NIK binding affinity kept. It can be concluded that the nitrogen atom has no
interaction with NIK protein, and this why compound 160 and 161 also displayed high NIK binding

affinity.
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Figure 58. Scaffold hopping identified novel highly potent NIK inhibitors. (PDB code: 6G4Z)

Ester scaffold building blocks listed in Figure 59 are essential starting materials for quick access of
designed molecules in above medicinal campaign. Furthermore, building blocks which can offer C-C
linking are of great value for medicinal chemists.
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Figure 59. Ester building blocks used in scaffold hopping in above discovery campaign
In order to discover GCS inhibitors with a novel scaffold, the team screened internal library and
identified a hit compound 163 which was structurally distinct from previously reported GCS
inhibitors. Hit-to lead optimization was started by scaffold hopping. Isoindolinone core in
compound 162 displayed improved potency, but reduced significantly solubility due to enhanced
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lipophilicity. In order to circumvent solubility issue, a nitrogen atom was introduced at another
position on the core to reduce lipophilicity. The introduction of a nitrogen atom in compound 164
and in compound 165 was well tolerated in terms of GCS inhibitory potency, and compound 165
demonstrated significantly improved solubility. Further optimization based on compound 165 by
exploration of substitutions on two phenyl rings generated lead compound 166. Although
compound 166 showed encouraging in vivo activity, oral administration of compound 166 at 30 or
100 mg/kg daily for 3 days reduced body weight. The team hypothesized that the observed body
weight reduction was due to off-target inhibition of SERT with ICso = 310 nM. SERT inhibition was
reportedly induces hypophagia and reduces body weight in rats. With this in mind, the team
continued to optimize by scaffold hopping, and found that pyridazin-3-one core in compound 167
exhibited comparable potency while decreasing efflux ratio which potentially benefit BBB-
penetration. Removing fluorine from compound 167 generated compound 168 which exhibited 3-
fold increased GCS potency (Figure 60). Compound 168 has no SERT inhibitory activity with ICso > 10
uM, and showed no reduction in body weight at any dose examined, indicating that compound 168
has a safer off-target toxicology profile than compound 166. 12
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Figure 60. Scaffold hopping resolved toxicity issue.

A new chemical series, triazolo[4,5-b]pyridine, has been identified as an inhibitor of PIM-1 by
scaffold hopping strategy. Comparing compound 169 with an imidazolo[1,2-b]pyridazine core and
compound 170 with a triazolo[4,5-b]pyridine core, it was extremely interesting that FLT-3 selective
compound 169 was changed to PIM-1/2/3 selective compound 170 by a simple scaffold hopping.
The same trend was also observed in pair compound 171 and 172. 3! |t was notable that
compound 171 was discontinued from phase 1 clinical trials, because it failed to demonstrate a safe
therapeutic window (Figure 61).
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Figure 61. Scaffold hopping resolved selectivity issue.

In order to discover small-molecule inhibitors of TNFalpha, the team examined naphthyridine
scaffolds as alternatives to the quinolone core in compound 173. Compound 174 with a 1,5-
naphthyridine core showed comparable potency, while compound 175 with a 1,7-naphthyridine
core and compound 176 with a 1,8-naphthyridine core lost potency a lot. This observation can be
explained due to better pi-stacking capability of 1,5-naphthyridine in compound 174 with Tyr135. In
addition, in the case of 1,7-naphthyridine in compound 175 and 1,8-naphthyridine in compound
176, the additional nitrogen atom is placed in a hydrophobic environment leading to a significant
desolvation penalty, thereby lowering the potency in the binding assay (Figure 62). 14
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Figure 62. Naphthyridine scaffolds impacted potency in different way.
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